Host–microbiota–insect interactions drive emergent virulence in a complex tree disease

Author:

Doonan James M.12ORCID,Broberg Martin13,Denman Sandra4,McDonald James E.1

Affiliation:

1. School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK

2. Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark

3. Faculty of Biological and Environmental Sciences, University of Helsinki, Finland

4. Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK

Abstract

Forest declines caused by climate disturbance, insect pests and microbial pathogens threaten the global landscape, and tree diseases are increasingly attributed to the emergent properties of complex ecological interactions between the host, microbiota and insects. To address this hypothesis, we combined reductionist approaches (single and polyspecies bacterial cultures) with emergentist approaches (bacterial inoculations in an oak infection model with the addition of insect larvae) to unravel the gene expression landscape and symptom severity of host–microbiota–insect interactions in the acute oak decline (AOD) pathosystem. AOD is a complex decline disease characterized by predisposing abiotic factors, inner bark lesions driven by a bacterial pathobiome, and larval galleries of the bark-boring beetle Agrilus biguttatus . We identified expression of key pathogenicity genes in Brenneria goodwinii , the dominant member of the AOD pathobiome, tissue-specific gene expression profiles, cooperation with other bacterial pathobiome members in sugar catabolism, and demonstrated amplification of pathogenic gene expression in the presence of Agrilus larvae. This study highlights the emergent properties of complex host–pathobiota–insect interactions that underlie the pathology of diseases that threaten global forest biomes.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3