Long-term exposure to artificial light at night in the wild decreases survival and growth of a coral reef fish

Author:

Schligler Jules1ORCID,Cortese Daphne1ORCID,Beldade Ricardo12ORCID,Swearer Stephen E.3ORCID,Mills Suzanne C.14ORCID

Affiliation:

1. USR 3278 CRIOBE, BP 1013, PSL Université Paris: EPHE-UPVD-CNRS, 98729 Papetoai, Moorea, French Polynesia

2. Las Cruces, Pontificia Universidad Católica de Chile, Estación Costera de Investigaciones Marinas and Center for Advanced Studies in Ecology and Biodiversity, Santiago de Chile, Chile

3. National Centre for Coasts and Climate and School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia

4. Laboratoire d'Excellence ‘CORAIL’, France

Abstract

Artificial light at night (ALAN) is an increasing anthropogenic pollutant, closely associated with human population density, and now well recognized in both terrestrial and aquatic environments. However, we have a relatively poor understanding of the effects of ALAN in the marine realm. Here, we carried out a field experiment in the coral reef lagoon of Moorea, French Polynesia, to investigate the effects of long-term exposure (18–23 months) to chronic light pollution at night on the survival and growth of wild juvenile orange-fin anemonefish, Amphiprion chrysopterus . Long-term exposure to environmentally relevant underwater illuminance (mean: 4.3 lux), reduced survival (mean: 36%) and growth (mean: 44%) of juvenile anemonefish compared to that of juveniles exposed to natural moonlight underwater (mean: 0.03 lux). Our study carried out in an ecologically realistic situation in which the direct effects of artificial lighting on juvenile anemonefish are combined with the indirect consequences of artificial lighting on other species, such as their competitors, predators, and prey, revealed the negative impacts of ALAN on life-history traits. Not only are there immediate impacts of ALAN on mortality, but the decreased growth of surviving individuals may also have considerable fitness consequences later in life. Future studies examining the mechanisms behind these findings are vital to understand how organisms can cope and survive in nature under this globally increasing pollutant.

Funder

Agence National de la Recherche

RESIPOL - Haut-Commissariat de la Republique en Polynesie franciase

Skye Instruments Ltd

Pacific Funds

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3