Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards

Author:

Morinaga Gen1ORCID,Bergmann Philip J.1

Affiliation:

1. Department of Biology, Clark University, Worcester, MA 01610, USA

Abstract

Dramatic evolutionary transitions in morphology are often assumed to be adaptive in a new habitat. However, these assumptions are rarely tested because such tests require intermediate forms, which are often extinct. In vertebrates, the evolution of an elongate, limbless body is generally hypothesized to facilitate locomotion in fossorial and/or cluttered habitats. However, these hypotheses remain untested because few studies examine the locomotion of species ranging in body form from tetrapod to snake-like. Here, we address these functional hypotheses by testing whether trade-offs exist between locomotion in surface, fossorial and cluttered habitats in Australian Lerista lizards, which include multiple intermediate forms. We found that snake-like species penetrated sand substrates faster than more lizard-like species, representing the first direct support of the adaptation to fossoriality hypothesis. By contrast, body form did not affect surface locomotion or locomotion through cluttered leaf litter. Furthermore, all species with hindlimbs used them during both fossorial and surface locomotion. We found no evidence of a trade-off between fossorial and surface locomotion. This may be either because Lerista employed kinematic strategies that took advantage of both axial- and limb-based propulsion. This may have led to the differential occupation of their habitat, facilitating diversification of intermediate forms.

Funder

Division of Integrative Organismal Systems

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3