Role of multiple, adjustable toes in distributed control shown by sideways wall-running in geckos

Author:

Song Yi12ORCID,Dai Zhendong1ORCID,Wang Zhouyi1ORCID,Full Robert J.2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China

2. Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

Abstract

Remarkable progress has been made characterizing one of nature's most integrated, hierarchical structures––the fibrillar adhesive system of geckos. Nonetheless, we lack an understanding of how multiple toes coordinate to facilitate geckos' acrobatic locomotion. Here, we tested the control function of gecko toes by running them on vertical substrates varying in orientation, friction and roughness. Sideways wall-running geckos realigned the toes of their top feet upward to resist gravity. Toe contact area was not compromised, but redistributed. Geckos aligned all toes upward to resist slipping when encountering low-friction patches during sideways wall-running. Negotiation of intermittent slippery strips showed an increased contribution of particular toes to compensate for toes that lost adhesion. Increasing substrate roughness using discrete rods perpendicular to sideways locomotion resulted in geckos bending and/or rotating toes to conform to and even grasp the rods, with potential forces more than five times body weight. Geckos increase their effectiveness of manoeuvrability in demanding environments by taking advantage of the distributed control afforded by multiple toes. Our findings provide insight on biological attachment and offer inspiration to advance gecko-inspired robotics and other biomimetic applications.

Funder

National Natural Science Foundation of China

China Scholarship Council

UC Berkeley Institutional Funds to Center for interdisciplinary Bio-inspiration in Education and Research

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3