Colonization order of bacterial isolates on treefrog embryos impacts microbiome structure in tadpoles

Author:

Jones Korin Rex1ORCID,Hughey Myra C.2,Belden Lisa K.1

Affiliation:

1. Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA

2. Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA

Abstract

Priority effects, or impacts of colonization order, may have lasting influence on ecological community composition. The embryonic microbiome is subject to stochasticity in colonization order of bacteria. Stochasticity may be especially impactful for embryos developing in bacteria-rich environments, such as the embryos of many amphibians. To determine if priority effects experienced as embryos impacted bacterial community composition in newly hatched tadpoles, we selectively inoculated the embryos of laboratory-raised hourglass treefrogs, Dendropsophus ebraccatus , with bacteria initially isolated from the skin of wild D. ebraccatus adults over 2 days. First, embryos were inoculated with two bacteria in alternating sequences. Next, we evaluated the outcomes of priority effects in an in vitro co-culture assay absent of host factors. We then performed a second embryo experiment, inoculating embryos with one of three bacteria on the first day and a community of five target bacteria on the second. Through 16S rRNA gene amplicon sequencing, we observed relative abundance shifts in tadpole bacteria communities due to priority effects. Our results suggest that the initial bacterial source pools of embryos shape bacterial communities at later life stages; however, the magnitude of those changes is dependent on the host environment and the identity of bacterial colonists.

Funder

Tom and Ana Moore

Vassar College

National Science Foundation

Virginia Polytechnic Institute and State University

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3