Preserving the woody plant tree of life in China under future climate and land-cover changes

Author:

Peng Shijia1ORCID,Hu Ruocheng2,Velazco Santiago José Elías345ORCID,Luo Yuan1,Lyu Tong1,Zhang Xiaoling1,Zhang Jian6ORCID,Wang Zhiheng1ORCID

Affiliation:

1. Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China

2. Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China

3. Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Misiones, Argentina

4. Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil

5. Department of Botany and Plant Sciences, University of California—Riverside, Riverside, CA, USA

6. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China

Abstract

The tree of life (TOL) is severely threatened by climate and land-cover changes. Preserving the TOL is urgent, but has not been included in the post-2020 global biodiversity framework. Protected areas (PAs) are fundamental for biological conservation. However, we know little about the effectiveness of existing PAs in preserving the TOL of plants and how to prioritize PA expansion for better TOL preservation under future climate and land-cover changes. Here, using high-resolution distribution maps of 8732 woody species in China and phylogeny-based Zonation, we find that current PAs perform poorly in preserving the TOL both at present and in 2070s. The geographical coverage of TOL branches by current PAs is approx. 9%, and less than 3% of the identified priority areas for preserving the TOL are currently protected. Interestingly, the geographical coverage of TOL branches by PAs will be improved from 9% to 52–79% by the identified priority areas for PA expansion. Human pressures in the identified priority areas are high, leading to high cost for future PA expansion. We thus suggest that besides nature reserves and national parks, other effective area-based conservation measures should be considered. Our study argues for the inclusion of preserving the TOL in the post-2020 conservation framework, and provides references for decision-makers to preserve the Earth's evolutionary history.

Funder

National Natural Science Foundation of China

Development Program of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3