Pollen grain size associated with pollinator feeding strategy

Author:

Hao Kai1,Tian Zhi-Xi1,Wang Zi-Chen1,Huang Shuang-Quan1ORCID

Affiliation:

1. Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, People's Republic of China

Abstract

Angiosperm pollen grain diameter varies greatly from a few microns to over 100, but the selective forces driving the interspecific variation in pollen size remain unclear. Although both pre- and post-pollination hypotheses have been proposed, empirical evidence remains scarce. Here we propose that visits by pollen-foraging pollinators have selected against large pollen grains. An association between pollinator behaviour and pollen grain size was confirmed by field studies of 80 flowering species in natural communities, showing that pollinators positively collected pollen in those species with relatively smaller pollen grains but rarely did so in species with larger ones. Allowing for the confounding effects of pollinator type, flower size or style length and pollen grain number, we found a significant effect of pollen-foraging behaviour on variation in pollen grain size, particularly in bee-pollinated plants. While these results suggest that many plant species whose pollen is collected or consumed by pollinators produce small pollen grains, it remains unclear whether pollen grain size is directly affected by pollinator foraging habit or indirectly mediated by pollen number trade-offs.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3