Ageing leads to reduced specificity of antimicrobial peptide responses in Drosophila melanogaster

Author:

Shit Biswajit1,Prakash Arun2ORCID,Sarkar Saubhik1,Vale Pedro F.2ORCID,Khan Imroze1ORCID

Affiliation:

1. Ashoka University, Plot No. 2, Rajiv Gandhi Education City, National Capital Region P.O. Rai, Sonepat, Haryana-131029, India

2. Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK

Abstract

Evolutionary theory predicts a late-life decline in the force of natural selection, possibly leading to late-life deregulations of the immune system. A potential outcome of such deregulations is the inability to produce specific immunity against target pathogens. We tested this possibility by infecting multiple Drosophila melanogaster lines (with bacterial pathogens) across age groups, where either individual or different combinations of Imd- and Toll-inducible antimicrobial peptides (AMPs) were deleted using CRISPR gene editing. We show a high degree of non-redundancy and pathogen-specificity of AMPs in young flies: in some cases, even a single AMP could confer complete resistance. However, ageing led to drastic reductions in such specificity to target pathogens, warranting the action of multiple AMPs across Imd and Toll pathways. Moreover, use of diverse AMPs either lacked survival benefits or even accompanied survival costs post-infection. These features were also sexually dimorphic: females required a larger repertoire of AMPs than males but extracted equivalent survival benefits. Finally, age-specific expansion of the AMP-repertoire was accompanied with ageing-induced downregulation of negative-regulators of the Imd pathway and damage to renal function post-infection, as features of poorly regulated immunity. Overall, we could highlight the potentially non-adaptive role of ageing in producing less-specific AMP responses, across sexes and pathogens.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3