Singing humpback whales respond to wind noise, but not to vessel noise

Author:

Girola E.12ORCID,Dunlop R. A.13ORCID,Noad M. J.12

Affiliation:

1. Cetacean Ecology Group, University of Queensland, Brisbane, Australia

2. School of Veterinary Science, University of Queensland, Gatton, Australia

3. School of Biological Sciences, University of Queensland, St Lucia, Australia

Abstract

Animal communication systems evolved in the presence of noise generated by natural sources. Many species can increase the source levels of their sounds to maintain effective communication in elevated noise conditions, i.e. they have a Lombard response. Human activities generate additional noise in the environment creating further challenges for these animals. Male humpback whales are known to adjust the source levels of their songs in response to wind noise, which although variable is always present in the ocean. Our study investigated whether this Lombard response increases when singing males are exposed to additional noise generated by motor vessels. Humpback whale singers were recorded off eastern Australia using a fixed hydrophone array. The source levels of the songs produced while the singers were exposed to varying levels of wind noise and vessel noise were measured. Our results show that, even when vessel noise is dominant, singing males still adjust the source levels of their songs to compensate for the underlying wind noise, and do not further increase their source levels to compensate for the additional noise produced by the vessel. Understanding humpback whales' response to noise is important for developing mitigation policies for anthropogenic activities at sea.

Funder

United States Bureau of Ocean Energy Management

E&P Sound and Marine Life Joint Industry Programme

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference86 articles.

1. Bradbury JW, Vehrencamp SL. 2011 Principles of animal communication, 2nd edn. Sunderland, MA: Sinauer Associates.

2. The influence of acoustics on speech production: A noise-induced stress phenomenon known as the Lombard reflex

3. Effects of Noise on Acoustic Signal Production in Marine Mammals

4. Le signe de l'elevation de la voix;Lombard E;Ann Malad Oreille,1911

5. On ocean ambient noise;Ross D;Acoust. Bull.,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3