Seed dispersal syndrome predicts ethanol concentration of fruits in a tropical dry forest

Author:

Casorso Julia G.1ORCID,DePasquale Allegra N.1ORCID,Romero Morales Suheidy2,Cheves Hernandez Saúl2,Lopez Navarro Ronald2,Hockings Kimberley J.3,Carrigan Matthew A.4,Melin Amanda D.1ORCID

Affiliation:

1. Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada

2. Área de Conservación Guanacaste, La Cruz, Costa Rica

3. College of Life and Environmental Sciences, University of Exeter, Exeter, UK

4. Science Department, College of Central Florida, Ocala, FL, USA

Abstract

Studying fruit traits and their interactions with seed dispersers can improve how we interpret patterns of biodiversity, ecosystem function and evolution. Mounting evidence suggests that fruit ethanol is common and variable, and may exert selective pressures on seed dispersers. To test this, we comprehensively assess fruit ethanol content in a wild ecosystem and explore sources of variation. We hypothesize that both phylogeny and seed dispersal syndrome explain variation in ethanol levels, and we predict that fruits with mammalian dispersal traits will contain higher levels of ethanol than those with bird dispersal traits. We measured ripe fruit ethanol content in species with mammal- ( n = 16), bird- ( n = 14) or mixed-dispersal ( n = 7) syndromes in a Costa Rican tropical dry forest. Seventy-eight per cent of fruit species yielded measurable ethanol concentrations. We detected a phylogenetic signal in maximum ethanol levels (Pagel's λ = 0.82). Controlling for phylogeny, we observed greater ethanol concentrations in mammal-dispersed fruits, indicating that dispersal syndrome helps explain variation in ethanol content, and that mammals may be more exposed to ethanol in their diets than birds. Our findings further our understanding of wild fruit ethanol and its potential role as a selective pressure on frugivore sensory systems and metabolism.

Funder

Wenner-Gren Foundation

NSERC

Canada Research Chairs

University of Calgary

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3