Traumatic mating increases anchorage of mating male and reduces female remating duration and fecundity in a scorpionfly species

Author:

Tong Xin1,Wang Peng-Yang1,Jia Mei-Zhuo1,Thornhill Randy2,Hua Bao-Zhen1ORCID

Affiliation:

1. Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China

2. Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

Traumatic mating is the male wounding his mate during mating using specialized anatomy. However, why males have evolved to injure their mates during mating remains poorly understood. We studied traumatic mating in Dicerapanorpa magna to determine its effects on male and female fitness. The sharp teeth on male gonostyli penetrate the female genitalia and cause copulatory wounds, and the number of scars on the female genitals is positively related to the number of times females mated. When the injurious teeth were encased with low-temperature wax, preventing their penetration of the female's genitalia during mating, male mating success and copulation duration were reduced significantly, indicating the importance of the teeth in allowing the male to secure copulation, remain in copula and effectively inseminate his mate. The remating experiments showed that traumatic mating had little effect on the female mating refractory period, but significantly reduced female remating duration with subsequent males, probably benefiting the first-mating male with longer copulation duration and transferring more sperm into the female's spermatheca. The copulatory wounds reduced female fecundity, but did not accelerate the timing of egg deposition. This is probably the first report that traumatic mating reduces female remating duration through successive remating experiments in animals. Overall, our results provide evidence that traumatic mating in the scorpionfly helps increase the male's anchoring control during mating and provides him advantage in sperm competition, but at the expense of lowering female fecundity.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3