The effect of resource limitation on the temperature dependence of mosquito population fitness

Author:

Huxley Paul J.1ORCID,Murray Kris A.12ORCID,Pawar Samraat3ORCID,Cator Lauren J.3ORCID

Affiliation:

1. MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK

2. MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia

3. Department of Life Sciences, Imperial College London, Ascot, UK

Abstract

Laboratory-derived temperature dependencies of life-history traits are increasingly being used to make mechanistic predictions for how climatic warming will affect vector-borne disease dynamics, partially by affecting abundance dynamics of the vector population. These temperature–trait relationships are typically estimated from juvenile populations reared on optimal resource supply, even though natural populations of vectors are expected to experience variation in resource supply, including intermittent resource limitation. Using laboratory experiments on the mosquito Aedes aegypti , a principal arbovirus vector, combined with stage-structured population modelling, we show that low-resource supply in the juvenile life stages significantly depresses the vector's maximal population growth rate across the entire temperature range (22–32°C) and causes it to peak at a lower temperature than at high-resource supply. This effect is primarily driven by an increase in juvenile mortality and development time, combined with a decrease in adult size with temperature at low-resource supply. Our study suggests that most projections of temperature-dependent vector abundance and disease transmission are likely to be biased because they are based on traits measured under optimal resource supply. Our results provide compelling evidence for future studies to consider resource supply when predicting the effects of climate and habitat change on vector-borne disease transmission, disease vectors and other arthropods.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3