Biomechanical adaptations enable phoretic mite species to occupy distinct spatial niches on host burying beetles

Author:

Sun Syuan-Jyun12ORCID,Chen Simon1,Federle Walter1ORCID,Kilner Rebecca M.1ORCID

Affiliation:

1. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

2. International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei 10617, Taiwan

Abstract

Niche theory predicts that ecologically similar species coexist by minimizing interspecific competition through niche partitioning. Therefore, understanding the mechanisms of niche partitioning is essential for predicting interactions and coexistence between competing organisms. Here, we study two phoretic mite species, Poecilochirus carabi and Macrocheles nataliae that coexist on the same host burying beetle Nicrophorus vespilloides and use it to ‘hitchhike’ between reproductive sites. Field observations revealed clear spatial partitioning between species in distinct host body parts. Poecilochirus carabi preferred the ventral side of the thorax, whereas M. nataliae were exclusively found ventrally at the hairy base of the abdomen. Experimental manipulations of mite density showed that each species preferred these body parts, largely regardless of the density of the other mite species on the host beetle. Force measurements indicated that this spatial distribution is mediated by biomechanical adaptations, because each mite species required more force to be removed from their preferred location on the beetle. While P. carabi attached with large adhesive pads to the smooth thorax cuticle, M. nataliae gripped abdominal setae with their chelicerae. Our results show that specialist biomechanical adaptations for attachment can mediate spatial niche partitioning among species sharing the same host.

Funder

Ministry of Education, Taiwan

Cambridge Commonwealth, European & International Trust

Royal Society

European Research Council

Doctoral Training Partnership from the Biotechnology and Biological Sciences Research Council

National Science and Technology Council 2030 Cross-Generation Young Scholars Program

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3