The evolution of the traplining pollinator role in hummingbirds: specialization is not an evolutionary dead end

Author:

Rombaut Louie M. K.12ORCID,Capp Elliot J. R.1,Hughes Emma C.1,Varley Zoë K.23,Beckerman Andrew P.1,Cooper Natalie2,Thomas Gavin H.13ORCID

Affiliation:

1. Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK

2. Department of Life Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK

3. Bird Group, Department of Life Sciences, Natural History Museum Tring, Akeman Street, Tring, Hertfordshire HP23 6AP, UK

Abstract

Trapliners are pollinators that visit widely dispersed flowers along circuitous foraging routes. The evolution of traplining in hummingbirds is thought to entail morphological specialization through the reciprocal coevolution of longer bills with the long-tubed flowers of widely dispersed plant species. Specialization, such as that exhibited by traplining hummingbirds, is often viewed as both irreversible and an evolutionary dead end. We tested these predictions in a macroevolutionary framework. Specifically, we assessed the relationship between beak morphology and foraging and tested whether transitions to traplining are irreversible and lead to lower rates of diversification as predicted by the hypothesis that specialization is an evolutionary dead end. We find that there have been multiple independent transitions to traplining across the hummingbird phylogeny, but reversals have been rare or incomplete at best. Multiple independent lineages of trapliners have become morphologically specialized, convergently evolving relatively large bills for their body size. Traplining is not an evolutionary dead end however, since trapliners continue to give rise to new traplining species at a rate comparable to non-trapliners.

Funder

NERC

European Research Council

Royal Society

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3