Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis

Author:

Comellas Ester12ORCID,Farkas Johanna E.3ORCID,Kleinberg Giona4ORCID,Lloyd Katlyn4,Mueller Thomas4,Duerr Timothy J.3ORCID,Muñoz Jose J.567ORCID,Monaghan James R.38ORCID,Shefelbine Sandra J.24ORCID

Affiliation:

1. Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

2. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA

3. Department of Biology, Northeastern University, Boston, MA USA

4. Department of Bioengineering, Northeastern University, Boston, MA USA

5. Department of Mathematics, Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

6. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain

7. Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain

8. Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA USA

Abstract

Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl ( Ambystoma mexicanum ) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

National Science Foundation

Ministerio de Ciencia e Innovación

Northeastern University

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3