Reproductive phenology is a repeatable, heritable trait linked to the timing of other life-history events in a migratory marine predator

Author:

Oosthuizen W. C.12ORCID,Pistorius P. A.2ORCID,Bester M. N.3,Altwegg R.1ORCID,de Bruyn P. J. N.3ORCID

Affiliation:

1. Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa

2. Marine Apex Predator Research Unit, Institute for Coastal and Marine Research and Department of Zoology, Nelson Mandela University, Gqeberha 6031, South Africa

3. Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa

Abstract

Population-level shifts in reproductive phenology in response to environmental change are common, but whether individual-level responses are modified by demographic and genetic factors remains less well understood. We used mixed models to quantify how reproductive timing varied across 1772 female southern elephant seals ( Mirounga leonina ) breeding at Marion Island in the Southern Ocean (1989–2019), and to identify the factors that correlate with phenological shifts within and between individuals. We found strong support for covariation in the timing of breeding arrival dates and the timing of the preceding moult. Breeding arrival dates were more repeatable at the individual level, as compared with the population level, even after accounting for individual traits (wean date as a pup, age and breeding experience) associated with phenological variability. Mother–daughter similarities in breeding phenology were also evident, indicating that additive genetic effects may contribute to between-individual variation in breeding phenology. Over 30 years, elephant seal phenology did not change towards earlier or later dates, and we found no correlation between annual fluctuations in phenology and indices of environmental variation. Our results show how maternal genetic (or non-genetic) effects, individual traits and linkages between cyclical life-history events can drive within- and between-individual variation in reproductive phenology.

Funder

National Research Foundation

South African Department of Science and Technology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3