Experimental evidence that matching habitat choice drives local adaptation in a wild population

Author:

Camacho Carlos1ORCID,Sanabria-Fernández Alberto1,Baños-Villalba Adrián1ORCID,Edelaar Pim1ORCID

Affiliation:

1. Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km. 1, 41013 Seville, Spain

Abstract

Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers ( Sphingonotus azurescens ) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype–environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3