Temporally balanced selection during development of larval Pacific oysters ( Crassostrea gigas ) inherently preserves genetic diversity within offspring

Author:

Durland Evan12ORCID,De Wit Pierre2ORCID,Langdon Chris1

Affiliation:

1. Department of Fisheries and Wildlife and Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA

2. Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden

Abstract

Balancing selection is one of the mechanisms which has been proposed to explain the maintenance of genetic diversity in species across generations. For species with large populations and complex life histories, however, heterogeneous selection pressures may create a scenario in which the net effects of selection are balanced across developmental stages. With replicated cultures and a pooled sequencing approach, we show that genotype-dependent mortality in larvae of the Pacific oyster ( Crassostrea gigas ) is largely temporally dynamic and inconsistently in favour of a single genotype or allelic variant at each locus. Overall, the patterns of genetic change we observe to be taking place are more complex than what would be expected under classical examples of additive or dominant genetic interactions. They are also not easily explained by our current understanding of the effects of genetic load. Collectively, temporally heterogeneous selection pressures across different larval developmental stages may act to maintain genetic diversity, while also inherently sheltering genetic load within oyster populations.

Funder

Oregon Sea Grant

ARS

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3