Many bee species, including rare species, are important for function of entire plant–pollinator networks

Author:

Simpson Dylan T.1ORCID,Weinman Lucia R.1,Genung Mark A.23,Roswell Michael14ORCID,MacLeod Molly15,Winfree Rachael2

Affiliation:

1. Graduate Program in Ecology and Evolution, and

2. Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA

3. Department of Biology, University of Louisiana, Lafayette, LA 70503, USA

4. Department of Entomology, University of Maryland, College Park, MD 20742, USA

5. Science Communications and Engagement, BioMarin Pharmaceutical Inc., Science Communications and Engagement, San Rafael, CA 94901, USA

Abstract

It is important to understand how biodiversity, including that of rare species, affects ecosystem function. Here, we consider this question with regard to pollination. Studies of pollination function have typically focused on pollination of single plant species, or average pollination across plants, and typically find that pollination depends on a few common species. Here, we used data from 11 plant–bee visitation networks in New Jersey, USA, to ask whether the number of functionally important bee species changes as we consider function separately for each plant species in increasingly diverse plant communities. Using rarefaction analysis, we found the number of important bee species increased with the number of plant species. Overall, 2.5 to 7.6 times more bee species were important at the community scale, relative to the average plant species in the same community. This effect did not asymptote in any of our datasets, suggesting that even greater bee biodiversity is needed in real-world systems. Lastly, on average across plant communities, 25% of bee species that were important at the community scale were also numerically rare within their network, making this study one of the strongest empirical demonstrations to date of the functional importance of rare species.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3