Phenological mismatch affects individual fitness and population growth in the winter moth

Author:

van Dis Natalie E.12ORCID,Sieperda Geert-Jan1,Bansal Vidisha12,van Lith Bart1,Wertheim Bregje2,Visser Marcel E.12ORCID

Affiliation:

1. Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands

2. Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands

Abstract

Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994–2021) on relative winter moth population densities at four locations in The Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.

Funder

Rijksuniversiteit Groningen

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3