Quantitative genetic-by-soil microbiome interactions in a perennial grass affect functional traits

Author:

Khasanova Albina12ORCID,Edwards Joseph1,Bonnette Jason1,Singer Esther32,Haque Taslima1,Juenger Thomas E.1ORCID

Affiliation:

1. Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78712, USA

2. Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94710, USA

3. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

Plants interact with diverse microbiomes that can impact plant growth and performance. Recent studies highlight the potential beneficial aspects of plant microbiomes, including the possibility that microbes facilitate the process of local adaptation in their host plants. Microbially mediated local adaptation in plants occurs when local host genotypes have higher fitness than foreign genotypes because of their affiliation with locally beneficial microbes. Here, plant adaptation results from genetic interactions of the host with locally beneficial microbes (e.g. host genotype-by-microbiome interactions). We used a recombinant inbred line (RIL) mapping population derived from upland and lowland ecotypes of the diploid C4 perennial bunch grassPanicum halliito explore quantitative genetic responses to soil microbiomes focusing on functional root and shoot traits involved in ecotypic divergence. We show that the growth and development of ecotypes and their trait divergence depends on soil microbiomes. Moreover, we find that the genetic architecture is modified by soil microbiomes, revealing important plant genotype-by-microbiome interactions for quantitative traits. We detected a number of quantitative trait loci (QTL) that interact with the soil microbiome. Our results highlight the importance of microbial interactions in ecotypic divergence and trait genetic architecture in C4 perennial grasses.

Funder

the US Department of Energy, Office of Science, Office of Biological and Environmental Research

National Science Foundation Plant Genome Research Program

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3