Warming signals in temperate reef communities following more than a decade of ecological stability

Author:

Soler G. A.1ORCID,Edgar G. J.1,Barrett N. S.1,Stuart-Smith R. D.1,Oh E.1,Cooper A.1,Ridgway K. R.12,Ling S. D.1ORCID

Affiliation:

1. Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia

2. CSIRO Hobart, Castray Esplanade, Battery Point Tasmania 7004, Australia

Abstract

Ecosystem structure and function are increasingly threatened by changing climate, with profound effects observed globally in recent decades. Based on standardized visual censuses of reef biodiversity, we describe 27 years of community-level change for fishes, mobile macroinvertebrates and macroalgae in the Tasmanian ocean-warming hotspot. Significant ecological change was observed across 94 reef sites (5–10 m depth range) spanning four coastal regions between three periods (1992–95, 2006–07, 2017–19), which occurred against a background of pronounced sea temperature rise (+0.80°C on average). Overall, fish biomass increased, macroinvertebrate species richness and abundance decreased and macroalgal cover decreased, particularly during the most recent decade. While reef communities were relatively stable and warming was slight between the 1990s and mid-2000s (+0.12°C mean temperature rise), increased abundances of warm affinity fishes and invertebrates accompanied warming during the most recent decade (+0.68°C rise). However, significant rises in the community temperature index (CTI) were only found for fishes, invertebrates and macroalgae in some regions. Coastal warming was associated with increased fish biomass of non-targeted species in fished zones but had little effect on reef communities within marine reserves. Higher abundances of larger fishes and lobsters inside reserves appeared to negate impacts of ‘thermophilization’.

Funder

Australian Research Council

Tasmanian Climate Change Office

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3