Life-history speed, population disappearances and noise-induced ratchet effects

Author:

Greyson-Gaito Christopher J.1ORCID,Gellner Gabriel1ORCID,McCann Kevin S.1ORCID

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Nature is replete with variation in the body sizes, reproductive output and generation times of species that produce life-history responses known to vary from small and fast to large and slow. Although researchers recognize that life-history speed likely dictates fundamental processes in consumer-resource interactions like productivity and stability, theoretical work remains incomplete in this critical area. Here, we examine the role of life-history speed on consumer–resource interactions by using a well-used mathematical approach that manipulates the speed of the consumer's growth rate in a consumer–resource interaction. Importantly, this approach holds the isocline geometry intact, allowing us to assess the impacts of altered life-history speed on stability (coefficient of variation, CV) without changing the underlying qualitative dynamics. Although slowing life history can be initially stabilizing, we find that in stochastic settings slowing ultimately drives highly destabilizing population disappearances, especially under reddened noise. Our results suggest that human-driven reddening of noise may decrease species stability because the autocorrelation of red noise enlarges the period and magnitude of perturbations, overwhelming a species' natural compensatory responses via a ratchet-like effect. This ratchet-like effect then pushes species’ population dynamics far away from equilibria, which can lead to precipitous local extinction.

Funder

Natural Sciences and Engineering Research Council of Canada

Government of Ontario

Canada First Research Excellence Fund

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3