The thermal niche and phylogenetic assembly of evergreen tree metacommunities in a mid-to-upper tropical montane zone

Author:

Das Arundhati Abin1ORCID,Ratnam Jayashree1ORCID

Affiliation:

1. Wildlife Biology and Conservation Program, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka 560065, India

Abstract

Frost and freezing temperatures have posed an obstacle to tropical woody evergreen plants over evolutionary time scales. Thus, along tropical elevation gradients, frost may influence woody plant community structure by filtering out lowland tropical clades and allowing extra-tropical lineages to establish at higher elevations. Here we assess the extent to which frost and freezing temperatures influence the taxonomic and phylogenetic structure of naturally patchy evergreen forests (locally known as shola ) along a mid-upper montane elevation gradient in the Western Ghats, India. Specifically, we examine the role of large-scale macroclimate and factors affecting local microclimates, including shola patch size and distance from shola edge, in driving shola metacommunity structure. We find that the shola metacommunity shows phylogenetic overdispersion with elevation, with greater representation of extra-tropical lineages above 2000 m, and marked turnover in taxonomic composition of shola woody communities near the frost-affected forest edge above 2000 m, from those below 2000 m. Both minimum winter temperature and patch size were equally important in determining metacommunity structure, with plots inside very large sholas dominated by older tropical lineages, with many endemics. Phylogenetic overdispersion in the upper montane shola metacommunity thus resulted from tropical lineages persisting in the interiors of large closed frost-free sholas, where their regeneration niche has been preserved over time.

Funder

Depart of Biotechnology, Government of India

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3