Deep learning models challenge the prevailing assumption that face-like effects for objects of expertise support domain-general mechanisms

Author:

Yovel Galit12ORCID,Grosbard Idan12,Abudarham Naphtali12ORCID

Affiliation:

1. School of Psychological Sciences, Tel Aviv University, Tel Aviv 69987, Israel

2. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69987, Israel

Abstract

The question of whether task performance is best achieved by domain-specific, or domain-general processing mechanisms is fundemental for both artificial and biological systems. This question has generated a fierce debate in the study of expert object recognition. Because humans are experts in face recognition, face-like neural and cognitive effects for objects of expertise were considered support for domain-general mechanisms. However, effects of domain, experience and level of categorization, are confounded in human studies, which may lead to erroneous inferences. To overcome these limitations, we trained deep learning algorithms on different domains (objects, faces, birds) and levels of categorization (basic, sub-ordinate, individual), matched for amount of experience. Like humans, the models generated a larger inversion effect for faces than for objects. Importantly, a face-like inversion effect was found for individual-based categorization of non-faces (birds) but only in a network specialized for that domain. Thus, contrary to prevalent assumptions, face-like effects for objects of expertise do not support domain-general mechanisms but may originate from domain-specific mechanisms. More generally, we show how deep learning algorithms can be used to dissociate factors that are inherently confounded in the natural environment of biological organisms to test hypotheses about their isolated contributions to cognition and behaviour.

Funder

Israeli Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3