Antagonistic effects of long- and short-term environmental variation on species coexistence

Author:

Liu Ming12ORCID,Rubenstein Dustin R.34ORCID,Cheong Siew Ann5ORCID,Shen Sheng-Feng1ORCID

Affiliation:

1. Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan

2. Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK

3. Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA

4. Center for Integrative Animal Behavior, Columbia University, New York, NY 10027, USA

5. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

Abstract

Assessing the impact of environmental fluctuations on species coexistence is critical for understanding biodiversity loss and the ecological impacts of climate change. Yet determining how properties like the intensity, frequency or duration of environmental fluctuations influence species coexistence remains challenging, presumably because previous studies have focused on indefinite coexistence. Here, we model the impact of environmental fluctuations at different temporal scales on species coexistence over a finite time period by employing the concepts of time-windowed averaging and performance curves to incorporate temporal niche differences within a stochastic Lotka–Volterra model. We discover that short- and long-term environmental variability has contrasting effects on transient species coexistence, such that short-term variation favours species coexistence, whereas long-term variation promotes competitive exclusion. This dichotomy occurs because small samples (e.g. environmental changes over long time periods) are more likely to show large deviations from the expected mean and are more difficult to predict than large samples (e.g. environmental changes over short time periods), as described in the central limit theorem. Consequently, we show that the complex set of relationships among environmental fluctuations and species coexistence found in previous studies can all be synthesized within a general framework by explicitly considering both long- and short-term environmental variation.

Funder

National Science Foundation

Award, AS

Academia Sinica

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3