Artificial light at night increases top-down pressure on caterpillars: experimental evidence from a light-naive forest

Author:

Deitsch John F.12,Kaiser Sara A.3ORCID

Affiliation:

1. Department of Entomology, Cornell University, Ithaca, NY 14850, USA

2. Department of Biological Sciences, Cornell University, Ithaca, NY 14850, USA

3. Center for Biodiversity Sciences, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY 14850, USA

Abstract

Artificial light at night (ALAN) is a globally widespread and expanding form of anthropogenic change that impacts arthropod biodiversity. ALAN alters interspecific interactions between arthropods, including predation and parasitism. Despite their ecological importance as prey and hosts, the impact of ALAN on larval arthropod stages, such as caterpillars, is poorly understood. We examined the hypothesis that ALAN increases top-down pressure on caterpillars from arthropod predators and parasitoids. We experimentally illuminated study plots with moderate levels (10–15 lux) of LED lighting at light-naive Hubbard Brook Experimental Forest, New Hampshire. We measured and compared between experimental and control plots: (i) predation on clay caterpillars, and (ii) abundance of arthropod predators and parasitoids. We found that predation rates on clay caterpillars and abundance of arthropod predators and parasitoids were significantly higher on ALAN treatment plots relative to control plots. These results suggest that moderate levels of ALAN increase top-down pressure on caterpillars. We did not test mechanisms, but sampling data indicates that increased abundance of predators near lights may play a role. This study highlights the importance of examining the effects of ALAN on both adult and larval life stages and suggests potential consequences of ALAN on arthropod populations and communities.

Funder

Cornell Lab of Ornithology

Rochester Academy of Science

Society for Integrative and Comparative Biology

Cornell University College of Agriculture and Life Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3