Limited vocal compensation for elevated ambient noise in bearded seals: implications for an industrializing Arctic Ocean

Author:

Fournet Michelle E. H.1ORCID,Silvestri Margherita2,Clark Christopher W.1ORCID,Klinck Holger13,Rice Aaron N.1ORCID

Affiliation:

1. Center for Conservation Bioacoustics, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY 14850, USA

2. Department of Environmental Biology, Marine Ecology Lab, Sapienza University of Rome, Viale dell'Università 32, 00185 Rome, Italy

3. Marine Mammal Institute, Department of Fisheries and Wildlife, Oregon State University, Newport, OR 97365, USA

Abstract

Vocalizing animals have several strategies to compensate for elevated ambient noise. These behaviours evolved under historical conditions, but compensation limits are quickly being reached in the Anthropocene. Acoustic communication is essential to male bearded seals that vocalize for courtship and defending territories. As Arctic sea ice declines, industrial activities and associated anthropogenic noise are likely to increase. Documenting how seals respond to noise and identifying naturally occurring behavioural thresholds would indicate either their resilience or vulnerability to changing soundscapes. We investigated whether male bearded seals modified call amplitudes in response to changing ambient noise levels. Vocalizing seals increased their call amplitudes until ambient noise levels reached an observable threshold, above which call source levels stopped increasing. The presence of a threshold indicates limited noise compensation for seals, which still renders them vulnerable to acoustic masking of vocal signals. This behavioural threshold and response to noise is critical for developing management plans for an industrializing Arctic.

Funder

National Oceanic and Atmospheric Administration

North Slope Borough

BP Exploration, Alaska Inc.

Bureau of Ocean Energy Management

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3