Object manipulation without hands

Author:

Sugasawa Shoko1ORCID,Webb Barbara2ORCID,Healy Susan D.1

Affiliation:

1. Centre for Biological Diversity, Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK

2. School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract

Our current understanding of manipulation is based on primate hands, resulting in a detailed but narrow perspective of ways to handle objects. Although most other animals lack hands, they are still capable of flexible manipulation of diverse objects, including food and nest materials, and depend on dexterity in object handling to survive and reproduce. Birds, for instance, use their bills and feet to forage and build nests, while insects carry food and construct nests with their mandibles and legs. Bird bills and insect mandibles are much simpler than a primate hand, resembling simple robotic grippers. A better understanding of manipulation in these and other species would provide a broader comparative perspective on the origins of dexterity. Here we contrast data from primates, birds and insects, describing how they sense and grasp objects, and the neural architectures that control manipulation. Finally, we outline techniques for collecting comparable manipulation data from animals with diverse morphologies and describe the practical applications of studying manipulation in a wide range of species, including providing inspiration for novel designs of robotic manipulators.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards End-to-End Automatic Insect Handling and Insect Scanning;2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA);2023-11-28

2. Sensorized objects used to quantitatively study distal grasping in the African elephant;iScience;2023-09

3. Dynamic object–fruit combinations by introduced Tanimbar corellas (Cacatua goffiniana) in Singapore;Behaviour;2023-08-04

4. Beak shape and nest material use in birds;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-07-10

5. Bird nest building: visions for the future;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3