Interactions among multiple stressors vary with exposure duration and biological response

Author:

King Olivia C.1ORCID,van de Merwe Jason P.1,Campbell Max D.1,Smith Rachael A.2,Warne Michael St. J345,Brown Christopher J.1

Affiliation:

1. Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia

2. Office of the Great Barrier Reef, Department of Environment and Science, Queensland Government, Brisbane, Queensland 4000, Australia

3. School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland 4067, Australia

4. Water Quality and Investigations, Queensland Department of Environment and Science, Brisbane, Queensland 4102, Australia

5. Centre for Agroecology, Water and Resilience, Coventry University, West Midlands, CV1 5FB, UK

Abstract

Coastal ecosystems are exposed to multiple anthropogenic stressors. Effective management actions would be better informed from generalized predictions of the individual, combined and interactive effects of multiple stressors; however, few generalities are shared across different meta-analyses. Using an experimental study, we present an approach for analysing regression-based designs with generalized additive models that allowed us to capture nonlinear effects of exposure duration and stressor intensity and access interactions among stressors. We tested the approach on a globally distributed marine diatom, using 72 h photosynthesis and growth assays to quantify the individual and combined effects of three common water quality stressors; photosystem II-inhibiting herbicide exposure, dissolved inorganic nitrogen (DIN) enrichment and reduced light (due to excess suspended sediment). Exposure to DIN and reduced light generally resulted in additivity, while exposure to diuron and reduced light resulted in additive, antagonistic or synergistic interactions, depending on the stressor intensity, exposure period and biological response. We thus find the context of experimental studies to be a primary driver of interactions. The experimental and modelling approaches used here bridge the gap between two-way designs and regression-based studies, which provides a way forward to identify generalities in multiple stressor interactions.

Funder

Australian Government Research Training Program Stipend Scholarship

Discovery Project grant from the Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3