Diet changes thermal acclimation capacity, but not acclimation rate, in a marine ectotherm (Girella nigricans) during warming

Author:

Hardison Emily A.1ORCID,Schwieterman Gail D.12,Eliason Erika J.1

Affiliation:

1. University of California, Santa Barbara, CA 93106, USA

2. School of Marine Sciences, University of Maine, Orono, ME 04469, USA

Abstract

Global climate change is increasing thermal variability in coastal marine environments and the frequency, intensity and duration of marine heatwaves. At the same time, food availability and quality are being altered by anthropogenic environmental changes. Marine ectotherms often cope with changes in temperature through physiological acclimation, which can take several weeks and is a nutritionally demanding process. Here, we tested the hypothesis that different ecologically relevant diets (omnivorous, herbivorous, carnivorous) impact thermal acclimation rate and capacity, using a temperate omnivorous fish as a model (opaleye,Girella nigricans).We measured acute thermal performance curves for maximum heart rate because cardiac function has been observed to set upper thermal limits in ectotherms. Opaleye acclimated rapidly after raising water temperatures, but their thermal limits and acclimation rate were not affected by their diet. However, the fish's acclimation capacity for maximum heart rate was sensitive to diet, with fish in the herbivorous treatment displaying the smallest change in heart rate throughout acclimation. Mechanistically, ventricle fatty acid composition differed with diet treatment and was related to cardiac performance in ways consistent with homoviscous adaptation. Our results suggest that diet is an important, but often overlooked, determinant of thermal performance in ectotherms on environmentally relevant time scales.

Funder

University of California, Santa Barbara

Hellman Foundation

Tri-county blood bank postdoctoral fellowship

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of cardiac collapse at high temperature in a marine teleost (Girella nigrians);Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2023-12

2. Ectotherm heat tolerance and the microbiome: current understanding, future directions and potential applications;Journal of Experimental Biology;2023-06-14

3. Hot hearts can beat faster when meat is on the menu;Journal of Experimental Biology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3