Structural colours in diverse Mesozoic insects

Author:

Cai Chenyang1ORCID,Tihelka Erik2ORCID,Pan Yanhong13ORCID,Yin Ziwei4ORCID,Jiang Rixin4,Xia Fangyuan5,Huang Diying1

Affiliation:

1. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China

2. Department of Animal Science, Hartpury College, Hartpury GL19 3BE, UK

3. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, People's Republic of China

4. Laboratory of Systematic Entomology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China

5. Lingpoge Amber Museum, Shanghai 201108, People's Republic of China

Abstract

Structural colours, nature's most pure and intense colours, originate when light is scattered via nanoscale modulations of the refractive index. Original colours in fossils illuminate the ecological interactions among extinct organisms and functional evolution of colours. Here, we report multiple examples of vivid metallic colours in diverse insects from mid-Cretaceous amber. Scanning and transmission electron microscopy revealed a smooth outer surface and five alternating electron-dense and electron-lucent layers in the epicuticle of a fossil wasp, suggesting that multilayer reflectors, the most common biophotonic nanostructure in animals and even plants, are responsible for the exceptional preservation of colour in amber fossils. Based on theoretical modelling of the reflectance spectra, a reflective peak of wavelength of 514 nm was calculated, corresponding to the bluish-green colour observed under white light. The green to blue structural colours in fossil wasps, beetles and a fly most likely functioned as camouflage, although other functions such as thermoregulation cannot be ruled out. This discovery not only provides critical evidence of evolution of structural colours in arthropods, but also sheds light on the preservation potential of nanostructures of ancient animals through geological time.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3