Parametric effects of light acting via multiple photoreceptors contribute to circadian entrainment in Drosophila melanogaster

Author:

Abhilash Lakshman1ORCID,Shafer Orie Thomas1ORCID

Affiliation:

1. The Advanced Science Research Center, The Graduate Center at the City University of New York, New York, NY 10031, USA

Abstract

Circadian rhythms in physiology and behaviour have near 24 h periodicities that must adjust to the exact 24 h geophysical cycles on earth to ensure adaptive daily timing. Such adjustment is called entrainment. One major mode of entrainment is via the continuous modulation of circadian period by the prolonged presence of light. Although Drosophila melanogaster is a prominent insect model of chronobiology, there is little evidence for such continuous effects of light in the species. In this study, we demonstrate that prolonged light exposure at specific times of the day shapes the daily timing of activity in flies. We also establish that continuous UV- and blue-blocked light lengthens the circadian period of Drosophila and provide evidence that this is produced by the combined action of multiple photoreceptors which, includes the cell-autonomous photoreceptor cryptochrome . Finally, we introduce ramped light cycles as an entrainment paradigm that produces light entrainment that lacks the large light-driven startle responses typically displayed by flies and requires multiple days for entrainment to shifted cycles. These features are reminiscent of entrainment in mammalian models systems and make possible new experimental approaches to understanding the mechanisms underlying entrainment in the fly.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference54 articles.

1. Circadian Systems: Entrainment

2. Moore-Ede MC, Sulzman FM, Fuller CA, Charles A. 1982 The clocks that time US: physiology of the circadian timing system. Cambridge, MA: Harvard University Press.

3. On the Adaptive Significance of Circadian Clocks for Their Owners

4. The Circadian Clock and Human Health

5. Colin Pittendrigh, Jürgen Aschoff, and the Natural Entrainment of Circadian Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3