Trophic strategies explain the ocean niches of small eukaryotic phytoplankton

Author:

Edwards Kyle F.1ORCID,Li Qian123,McBeain Kelsey A.1,Schvarcz Christopher R.12ORCID,Steward Grieg F.12

Affiliation:

1. Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA

2. Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA

3. School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai Shi, Xuhui Qu 200240, China

Abstract

A large fraction of marine primary production is performed by diverse small protists, and many of these phytoplankton are phagotrophic mixotrophs that vary widely in their capacity to consume bacterial prey. Prior analyses suggest that mixotrophic protists as a group vary in importance across ocean environments, but the mechanisms leading to broad functional diversity among mixotrophs, and the biogeochemical consequences of this, are less clear. Here we use isolates from seven major taxa to demonstrate a tradeoff between phototrophic performance (growth in the absence of prey) and phagotrophic performance (clearance rate when consuming Prochlorococcus ). We then show that trophic strategy along the autotrophy-mixotrophy spectrum correlates strongly with global niche differences, across depths and across gradients of stratification and chlorophyll a . A model of competition shows that community shifts can be explained by greater fitness of faster-grazing mixotrophs when nutrients are scarce and light is plentiful. Our results illustrate how basic physiological constraints and principles of resource competition can organize complexity in the surface ocean ecosystem.

Funder

National Science Foundation

Simons Foundation

Division of Ocean Sciences

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3