Quantitative genetic analysis of floral traits shows current limits but potential evolution in the wild

Author:

Castellanos Maria Clara12ORCID,Montero-Pau Javier34ORCID,Ziarsolo Peio3,Blanca Jose Miguel3,Cañizares Joaquin3ORCID,Pausas Juli G.2ORCID

Affiliation:

1. School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK

2. CIDE-CSIC, Montcada, Valencia, Spain

3. COMAV, Universitat Politècnica de València, Valencia, Spain

4. Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain

Abstract

The vast variation in floral traits across angiosperms is often interpreted as the result of adaptation to pollinators. However, studies in wild populations often find no evidence of pollinator-mediated selection on flowers. Evolutionary theory predicts this could be the outcome of periods of stasis under stable conditions, followed by shorter periods of pollinator change that provide selection for innovative phenotypes. We asked if periods of stasis are caused by stabilizing selection, absence of other forms of selection or by low trait ability to respond even if selection is present. We studied a plant predominantly pollinated by one bee species across its range. We measured heritability and evolvability of traits, using genome-wide relatedness in a large wild population, and combined this with estimates of selection on the same individuals. We found evidence for both stabilizing selection and low trait heritability as potential explanations for stasis in flowers. The area of the standard petal is under stabilizing selection, but the variability is not heritable. A separate trait, floral weight, presents high heritability, but is not currently under selection. We show how a simple pollination environment coincides with the absence of current prerequisites for adaptive evolutionary change, while heritable variation remains to respond to future selection pressures.

Funder

H2020 Marie Skłodowska-Curie Actions

Spanish Government

Generalitat Valenciana

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3