Invasion of the body snatchers: the role of parasite introduction in host distribution and response to salinity in invaded estuaries

Author:

Blakeslee April M. H.1ORCID,Pochtar Darby L.2,Fowler Amy E.2,Moore Chris S.1,Lee Timothy S.1,Barnard Rebecca B.1,Swanson Kyle M.1,Lukas Laura C.1,Ruocchio Matthew1,Torchin Mark E.3,Miller A. Whitman4,Ruiz Gregory M.4,Tepolt Carolyn K.5

Affiliation:

1. Biology Department, East Carolina University, Greenville, NC 27858, USA

2. Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA

3. Smithsonian Tropical Research Institute, Panama City, Panama

4. Invasion Ecology Lab, Smithsonian Environmental Research Lab, Edgewater, MD, USA

5. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Abstract

In dynamic systems, organisms are faced with variable selective forces that may impose trade-offs. In estuaries, salinity is a strong driver of organismal diversity, while parasites shape species distributions and demography. We tested for trade-offs between low-salinity stress and parasitism in an invasive castrating parasite and its mud crab host along salinity gradients of two North Carolina rivers. We performed field surveys every six to eight weeks over 3 years to determine factors influencing parasite prevalence, host abundance, and associated taxa diversity. We also looked for signatures of low-salinity stress in the host by examining its response (time-to-right and gene expression) to salinity. We found salinity and temperature significantly affected parasite prevalence, with low-salinity sites (less than 10 practical salinity units (PSU)) lacking infection, and populations in moderate salinities at warmer temperatures reaching prevalence as high as 60%. Host abundance was negatively associated with parasite prevalence. Host gene expression was plastic to acclimation salinity, but several osmoregulatory and immune-related genes demonstrated source-dependent salinity response. We identified a genetic marker that was strongly associated with salinity against a backdrop of no neutral genetic structure, suggesting possible selection on standing variation. Our study illuminates how selective trade-offs in naturally dynamic systems may shape host evolutionary ecology.

Funder

Oak Ridge Affiliated Universities Ralph E. Powe Junior Faculty Enhancement Award

East Carolina University Coastal Scholar Award

North Carolina Sea Grant

East Carolina University Thomas Harriot College of Arts and Sciences Research Initiation Grant

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3