Early events in hepatitis B infection: the role of inoculum dose

Author:

Ciupe Stanca M.1ORCID,Vaidya Naveen K.234ORCID,Forde Jonathan E.5

Affiliation:

1. Department of Mathematics, Virginia Tech, Blacksburg, 24060 VA, USA

2. Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA

3. Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA

4. Viral Information Institute, San Diego State University, San Diego, CA 92182, USA

5. Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, New York 14456, USA

Abstract

The relationship between the inoculum dose and the ability of the pathogen to invade the host is poorly understood. Experimental studies in non-human primates infected with different inoculum doses of hepatitis B virus have shown a non-monotonic relationship between dose magnitude and infection outcome, with high and low doses leading to 100% liver infection and intermediate doses leading to less than 0.1% liver infection, corresponding to CD4 T-cell priming. Since hepatitis B clearance is CD8 T-cell mediated, the question of whether the inoculum dose influences CD8 T-cell dynamics arises. To help answer this question, we developed a mathematical model of virus–host interaction following hepatitis B virus infection. Our model explains the experimental data well, and predicts that the inoculum dose affects both the timing of the CD8 T-cell expansion and the quality of its response, especially the non-cytotoxic function. We find that a low-dose challenge leads to slow CD8 T-cell expansion, weak non-cytotoxic functions, and virus persistence; high- and medium-dose challenges lead to fast CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance; while a super-low-dose challenge leads to delayed CD8 T-cell expansion, strong cytotoxic and non-cytotoxic function, and virus clearance. These results are useful for designing immune cell-based interventions.

Funder

National Science Foundation

NSF

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3