Affiliation:
1. Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
Abstract
Female reproductive fluids (FRFs) serve key reproductive functions in sexually reproducing animals, including modifying the way sperm swim and detect eggs, and influencing sperm lifespan. Despite the central role of FRF during fertilization, we know surprisingly little about sperm–FRF interactions under different environmental conditions. Theory suggests that in external fertilizers FRF may ‘rescue’ sperm from ageing effects as they search to fertilize eggs. Here, we test the interaction between these two fundamental properties of the fertilization environment, ejaculate age (i.e. time since ejaculation) and FRF, on a range of functional sperm phenotypes in a broadcast spawning mussel,
Mytilus galloprovincialis
. We found that the effects of ejaculate age on multivariate sperm motility traits and total sperm motility were altered by FRF, and that longer-lived sperm exhibit stronger, likely more advantageous, responses to FRF after periods of ageing. We also detected significant among-male variation in the relationship between sperm motility traits and ejaculate age; notably, these patterns were only revealed when sperm encountered FRF. Collectively these findings underscore the importance of considering female reproductive physiology when interpreting ageing-related declines in sperm motility, as doing so may expose importance sources of variation in sperm phenotypic plasticity among males and environments.
Funder
Australian Government
University of Western Australia
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献