Multidimensional plasticity in the Glanville fritillary butterfly: larval performance is temperature, host and family specific

Author:

Verspagen Nadja123ORCID,Ikonen Suvi23,Saastamoinen Marjo12ORCID,van Bergen Erik12ORCID

Affiliation:

1. Helsinki Institute of Life Science, University of Helsinki, Finland

2. Research Centre of Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland

3. Lammi Biological Station, University of Helsinki, Finland

Abstract

Variation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant (i.e. the consequences of potential maternal oviposition choices) affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (G × E × E). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Together, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.

Funder

Erasmus+

Lammi Biological Station Environmental Research Foundation

European Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3