Gene expression correlates of social evolution in coral reef butterflyfishes

Author:

Nowicki Jessica P.12ORCID,Pratchett Morgan S.1,Walker Stefan P. W.1,Coker Darren J.13,O'Connell Lauren A.2ORCID

Affiliation:

1. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia

2. Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305, USA

3. Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Abstract

Animals display remarkable variation in social behaviour. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e. pair bonding versus solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin ( OTR ), arginine vasopressin ( V1aR ), dopamine ( D1R, D2R ) and mu-opioid ( MOR ). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR , V1aR, D1R, D2R and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair-bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair-bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine and opioid signalling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.

Funder

NSF EDEN Research Travel Award

Harvard Bauer Fellowship

L'Oreal For Women in Science

ARC Centre of Excellence for Coral Reef Studies

New York Stem Cell Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3