Distinct body-size responses to warming climate in three rodent species

Author:

Li Ke12ORCID,Sommer Stefan3ORCID,Yang Zaixue4,Guo Yongwang5,Yue Yaxian2,Ozgul Arpat3ORCID,Wang Deng2ORCID

Affiliation:

1. College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China

2. College of Grassland Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China

3. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

4. Yuqing Plant Protection and Quarantine Station, Yuqing County, Guizhou 564400, People's Republic of China

5. National Agro-tech Extension and Service Center, 20 Maizidian Avenue, Chaoyang District, Beijing 100026, People's Republic of China

Abstract

In mammals, body-size responses to warming climates are diverse, and the mechanisms underlying these different responses have been little investigated. Using temporal and spatial datasets of three rodent species distributed across different climatic zones in China, we investigated temporal and spatial trends of body size (length and mass), identified the critical drivers of these trends, and inferred the potential causes underlying the distinct body-size responses to the critical drivers. We found that body mass of all species remained stable over time and across space. Body length, however, increased in one species over time and in two species across space. Generally, body-length variation was predicted best by minimum ambient temperature. Moreover, in two species, body length changed linearly with temperature differences between ancestral and colonization areas. These distinct temperature–length patterns may jointly be caused by species-specific temperature sensitivities and experienced magnitudes of warming. We hypothesize that species or populations distributed across distinct temperature gradients evolved different intrinsic temperature sensitivities, which affect how their body sizes respond to warming climates. Our results suggest that size trends associated with climate change should be explored at higher temporal and spatial resolutions, and include clades of species with similar distributions.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3