High dispersal rates in hybrids drive expansion of maladaptive hybridization

Author:

Bourret Samuel L.1ORCID,Kovach Ryan P.2,Cline Timothy J.3,Strait Jeffrey T.4ORCID,Muhlfeld Clint C.3

Affiliation:

1. Montana Fish, Wildlife & Parks, 490 N. Meridian Rd. Kalispell, MT 59901, USA

2. Montana Fish, Wildlife & Parks, University of Montana, Fish Conservation Genetics Lab, Missoula, MT 59812, USA

3. U.S. Geological Survey, Northern Rocky Mountain Science Center, 38 Mather Dr., West Glacier, MT 59936, USA

4. Idaho Department of Fish and Game, 2885 W. Kathleen Ave., Coeur d'Alene, ID 83815, USA

Abstract

Hybridization between native and invasive species, a major cause of biodiversity loss, can spread rapidly even when hybrids have reduced fitness. This paradox suggests that hybrids have greater dispersal rates than non-hybridized individuals, yet this mechanism has not been empirically tested in animal populations. Here, we test if non-native genetic introgression increases reproductive dispersal using a human-mediated hybrid zone between native cutthroat trout ( Oncorhynchus clarkii ) and invasive rainbow trout ( Oncorhynchus mykiss ) in a large and connected river system. We quantified the propensity for individuals to migrate from natal rearing habitats (migrate), reproduce in non-natal habitats (stray), and the joint probability of dispersal as a function of genetic ancestry. Hybrid trout with predominantly non-native rainbow trout ancestry were more likely to migrate as juveniles and to stray as adults. Overall, hybrids with greater than 50% rainbow trout ancestry were 5.7 times more likely to disperse than native or hybrid trout with small amounts of rainbow trout ancestry. Our results show a genetic basis for increased dispersal in hybrids that is likely contributing to the rapid expansion of invasive hybridization between these species. Management actions that decrease the probability of hybrid dispersal may mitigate the harmful effects of invasive hybridization on native biodiversity.

Funder

Biological Threats and Invasive Species Program

Bonneville Power Administration

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3