Swimming kinematics and hydrodynamics of barnacle larvae throughout development

Author:

Wong J. Y.123ORCID,Chan Benny K. K.3ORCID,Chan K. Y. Karen4ORCID

Affiliation:

1. Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan

2. Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan

3. Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan

4. Biology Department, Swarthmore College, Swarthmore, PA 19081, USA

Abstract

Changes in size strongly influence organisms' ecological performances. For aquatic organisms, they can transition from viscosity- to inertia-dominated fluid regimes as they grow. Such transitions are often associated with changes in morphology, swimming speed and kinematics. Barnacles do not fit into this norm as they have two morphologically distinct planktonic larval phases that swim differently but are of comparable sizes and operate in the same fluid regime (Reynolds number 10 0 –10 1 ). We quantified the hydrodynamics of the rocky intertidal stalked barnacle Capitulum mitella from the nauplius II to cyprid stage and examined how kinematics and size increases affect its swimming performance. Cyprids beat their appendages in a metachronal wave to swim faster, more smoothly, and with less backwards slip per beat cycle than did all naupliar stages. Micro-particle image velocimetry showed that cyprids generated trailing viscous vortex rings that pushed water backwards for propulsion, contrary to the nauplii's forward suction current for particle capture. Our observations highlight that zooplankton swimming performance can shift via morphological and kinematic modifications without a significant size increase. The divergence in ecological functions through ontogeny in barnacles and the removal of feeding requirement likely contributed to the evolution of the specialized, taxonomically unique cyprid phase.

Funder

Taiwan International Graduate Fellowship Program

Ministry of Science and Technology, Taiwan

Croucher Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3