Convergence and contingency in the evolution of a specialized mode of life: multiple origins and high disparity of rock-boring bivalves

Author:

Collins Katie S.1ORCID,Edie Stewart M.2ORCID,Jablonski David3

Affiliation:

1. The Natural History Museum, Cromwell Road SW7 5BD, London, UK

2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA

3. Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA

Abstract

Evolutionary adaptation to novel, specialized modes of life is often associated with a close mapping of form to the new function, resulting in narrow morphological disparity. For bivalve molluscs, endolithy (rock-boring) has biomechanical requirements thought to diverge strongly from those of ancestral functions. However, endolithy in bivalves has originated at least eight times. Three-dimensional morphometric data representing 75 species from approximately 94% of extant endolithic genera and families, along with 310 non-endolithic species in those families, show that endolithy is evolutionarily accessible from many different morphological starting points. Although some endoliths appear to converge on certain shell morphologies, the range of endolith shell form is as broad as that belonging to any other bivalve substrate use. Nevertheless, endolithy is a taxon-poor function in Bivalvia today. This limited richness does not derive from origination within source clades having significantly low origination or high extinction rates, and today's endoliths are not confined to low-diversity biogeographic regions. Instead, endolithy may be limited by habitat availability. Both determinism (as reflected by convergence among distantly related taxa) and contingency (as reflected by the endoliths that remain close to the disparate morphologies of their source clades) underlie the occupation of endolith morphospace.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3