Wind plays a major but not exclusive role in the prevalence of insect flight loss on remote islands

Author:

Leihy Rachel I.1ORCID,Chown Steven L.1ORCID

Affiliation:

1. School of Biological Sciences, Monash University, Victoria 3800, Australia

Abstract

Terrestrial species on islands often show reduced dispersal abilities. For insects, the generality of explanations for island flight loss remains contentious. Although habitat stability is considered the most plausible explanation, others are frequently highlighted. Adopting a strong inference approach, we examined the hypotheses proposed to account for the prevalence of flightlessness in island insect assemblages, for a region long suspected to be globally unusual in this regard—the Southern Ocean Islands (SOIs). Combining comprehensive faunal inventories, species' morphological information, and environmental variables from 28 SOIs, we provide the first quantitative evidence that flightlessness is exceptionally prevalent among indigenous SOI insect species (47%). Prevalence among species which have evolved elsewhere is much lower: Arctic island species (8%), species introduced to the SOIs (17%), and globally (estimated as approx. 5%). Variation in numbers of flightless species and genera across islands is best explained by variation in wind speed, although habitat stability (thermal seasonality proxy) may play a role. Variables associated with insularity, such as island size, are generally poor predictors of flightlessness. The outcomes redirect attention to Darwin's wind hypothesis. They suggest, however, that wind selects for flightlessness through an energy trade-off between flight and reproduction, instead of by displacement from suitable habitats.

Funder

Sir James McNeill Foundation

Antarctic Circumnavigation Expedition

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference96 articles.

1. Darwin CR. 1855 Letter to J.D Hooker (ed. JD Hooker). See https://www.darwinproject.ac.uk/entry-1643 Darwin Correspondence Project.

2. Hooker JD. 1855 Letter to C.R. Darwin. (ed. CR Darwin). See https://www.darwinproject.ac.uk/entry-1644 Darwin Correspondence Project.

3. PHYSIOLOGY AND ECOLOGY OF DISPERSAL POLYMORPHISM IN INSECTS

4. The Biomechanics of Insect Flight

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3