Affiliation:
1. Section Genetics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
Abstract
Ever since Darwin's discovery of natural selection, we expect traits to evolve to increase organisms' fitness. As a result, we can use optimization models to make
a priori
predictions of phenotypic variation, even when selection is frequency-dependent. A notable example is the prediction of female-biased sex ratios resulting from local mate competition (LMC) and inbreeding. LMC models incorporate the effects of LMC and inbreeding. Fig wasp sex ratio adjustments fit LMC predictions well. However, the appropriateness of LMC models to fig wasps has been questioned, and the role that a coincidental by-product plays in creating the apparent fit has been clearly illustrated. Here, we show that the sex ratio adjustments of a fig wasp are the result of a dual mechanism. It consists of a standard facultative LMC response favoured by natural selection, as well as a mechanism that may be the result of selection, but that could also be a coincidental by-product. If it is a by-product, the fitness increase is coincidental and natural selection's role was limited to fine-tuning it for higher fitness returns. We further document a case of an apparent fitness-reducing sex ratio adjustment. We conclude that the use of the adaptationist approach demands that our understanding of traits must be remodelled continually to rectify spurious assumptions.
Funder
National Research Foundation
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献