Tipping points and interactive effects of chronic human disturbance and acute heat stress on coral diversity

Author:

Maucieri Dominique G.1ORCID,Starko Samuel12ORCID,Baum Julia K.13ORCID

Affiliation:

1. Department of Biological Sciences, University of Victoria, Victoria, British Columbia, Canada V8P 5C2

2. UWA Oceans Institute, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia

3. Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, 96744, USA

Abstract

Multiple anthropogenic stressors co-occur ubiquitously in natural ecosystems. However, multiple stressor studies often produce conflicting results, potentially because the nature and direction of stressor interactions depends upon the strength of the underlying stressors. Here, we first examine how coral α- and β-diversities vary across sites spanning a gradient of chronic local anthropogenic stress before and after a prolonged marine heatwave. Developing a multiple stressor framework that encompasses non-discrete stressors, we then examine interactions between the continuous and discrete stressors. We provide evidence of additive effects, antagonistic interactions (with heatwave-driven turnover in coral community composition diminishing as the continuous stressor increased), and tipping points (at which the response of coral Hill-richness to stressors changed from additive to near synergistic). We show that community-level responses to multiple stressors can vary, and even change qualitatively, with stressor intensity, underscoring the importance of examining complex, but realistic continuous stressors to understand stressor interactions and their ecological impacts.

Funder

David and Lucile Packard Foundation

National Sciences Foundation RAPID

Natural Sciences and Engineering Research Council of Canada

University of Victoria

Pew Charitable Trusts

National Geographic Society

Rufford Foundation

E.W.R. Steacie Memorial Fund

Centre for Asia-Pacific Initiatives

Canadian Foundation for Innovation

British Columbia Knowledge Development Fund

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3