Repetition in social contacts: implications in modelling the transmission of respiratory infectious diseases in pre-pandemic and pandemic settings

Author:

Loedy Neilshan1ORCID,Wallinga Jacco23,Hens Niel14ORCID,Torneri Andrea1

Affiliation:

1. Data Science Institute, Hasselt University, Hasselt, Belgium

2. Center for Infectious Disease Control, National Institute for Public Health and the Environment, Blithoven, The Netherlands

3. Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands

4. Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

Abstract

The spread of viral respiratory infections is intricately linked to human interactions, and this relationship can be characterized and modelled using social contact data. However, many analyses tend to overlook the recurrent nature of these contacts. To bridge this gap, we undertake the task of describing individuals’ contact patterns over time by characterizing the interactions made with distinct individuals during a week. Moreover, we gauge the implications of this temporal reconstruction on disease transmission by juxtaposing it with the assumption of random mixing over time. This involves the development of an age-structured individual-based model, using social contact data from a pre-pandemic scenario (the POLYMOD study) and a pandemic setting (the Belgian CoMix study), respectively. We found that accounting for the frequency of contacts impacts the number of new, distinct, contacts, revealing a lower total count than a naive approach, where contact repetition is neglected. As a consequence, failing to account for the repetition of contacts can result in an underestimation of the transmission probability given a contact, potentially leading to inaccurate conclusions when using mathematical models for disease control. We, therefore, underscore the necessity of acknowledging contact repetition when formulating effective public health strategies.

Funder

H2020 European Research Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3