Genetic conflict and the origin of multigene families: implications for sex chromosome evolution

Author:

Martí Emiliano1ORCID,Larracuente Amanda M.1ORCID

Affiliation:

1. Department of Biology, University of Rochester, Rochester, NY 14627, USA

Abstract

Sex chromosomes are havens for intragenomic conflicts. The absence of recombination between sex chromosomes creates the opportunity for the evolution of segregation distorters: selfish genetic elements that hijack different aspects of an individual's reproduction to increase their own transmission. Biased (non-Mendelian) segregation, however, often occurs at a detriment to their host's fitness, and therefore can trigger evolutionary arms races that can have major consequences for genome structure and regulation, gametogenesis, reproductive strategies and even speciation. Here, we review an emerging feature from comparative genomic and sex chromosome evolution studies suggesting that meiotic drive is pervasive: the recurrent evolution of paralogous sex-linked gene families. Sex chromosomes of several species independently acquire and co-amplify rapidly evolving gene families with spermatogenesis-related functions, consistent with a history of intragenomic conflict over transmission. We discuss Y chromosome features that might contribute to the tempo and mode of evolution of X/Y co-amplified gene families, as well as their implications for the evolution of complexity in the genome. Finally, we propose a framework that explores the conditions that might allow for recurrent bouts of fixation of drivers and suppressors, in a dosage-sensitive fashion, and therefore the co-amplification of multigene families on sex chromosomes.

Funder

National Institutes of Health

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference140 articles.

1. Genes that Violate Mendel's Rules

2. Leigh EG. 1971 Adaptation and diversity: natural history and the mathematics of evolution. San Francisco, CA: Freeman, Cooper & Company.

3. Sex and Conflict

4. Meiotic Drive as an Evolutionary Force

5. Selfish genetic elements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3