Population genomics reveals possible genetic evidence for parallel evolution of Sebastiscus marmoratus in the northwestern Pacific Ocean

Author:

Xu Shengyong1ORCID,Yanagimoto Takashi2,Song Na3,Cai Shanshan1,Gao Tianxiang1ORCID,Zhang Xiumei1

Affiliation:

1. National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, Zhejiang, People's Republic of China

2. National Research Institute of Fisheries Science, 2-12-4, Fukuura, Kanazawa, Yokohama, Japan

3. Institute of Evolution and Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, Shandong, People's Republic of China

Abstract

Understanding patterns of population diversity and structuring among marine populations is of great importance for evolutionary biology, and can also directly inform fisheries management and conservation. In this study, genotyping-by-sequencing was used to assess population genetic diversity and connectivity of Sebastiscus marmoratus . Based on 130 individuals sampled from 10 locations in the northwestern Pacific Ocean, we identified and genotyped 17 653 single-nucleotide polymorphisms. The patterns of genetic diversity and population differentiation suggested that the Okinawa Trough might be the ancestral centre of S. marmoratus after the Last Glacial Maximum. A shallow genetic structure was observed among sampled populations based on the implemented structuring approaches. Surprisingly, we detected genetic homogeneity in two population pairs (i.e. Xiamen–Niigata and Zhuhai–Iki Island), in which populations have large geographical and latitudinal intervals. Population structure and allele frequency distribution based on outlier loci also mirrored the observed genetic homogeneity in the above-mentioned population pairs. Integrated with biological, environmental and genomic data, our results provide possible genetic evidence for parallel evolution. Our study also provides new perspectives on the population structure of S. marmoratus , which could have important implications for sound management and conservation of this fishery species.

Funder

Public Science and Technology Research Funds Projects of Ocean

International Science and Technology Cooperation Program of China

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3